

INTERNATIONAL
GEMOLOGICAL
INSTITUTE

ELECTRONIC COPY

LABORATORY GROWN DIAMOND REPORT

April 26, 2025

IGI Report Number

LG700565110

Description

LABORATORY GROWN DIAMOND

Shape and Cutting Style

ROUND BRILLIANT

Measurements

6.75 - 6.80 X 4.22 MM

GRADING RESULTS

Carat Weight

1.19 CARAT

Color Grade

D

Clarity Grade

VS 1

Cut Grade

IDEAL

ADDITIONAL GRADING INFORMATION

Polish

EXCELLENT

Symmetry

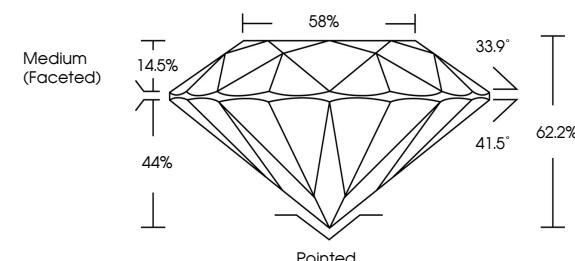
EXCELLENT

Fluorescence

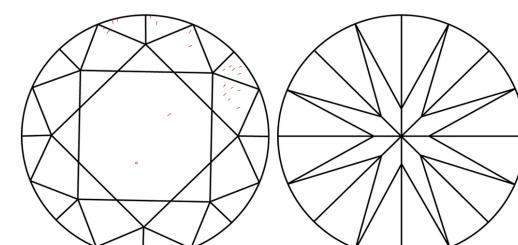
NONE

Inscription(s)

IGI LG700565110


Comments: As Grown - No indication of post-growth treatment.

This Laboratory Grown Diamond was created by High Pressure High Temperature (HPHT) growth process.


Type II

LG700565110
Report verification at igi.org

PROPORTIONS

CLARITY CHARACTERISTICS

KEY TO SYMBOLS

Red symbols indicate internal characteristics.

Green symbols indicate external characteristics.

Sample Image Used

LABORATORY GROWN DIAMOND REPORT

April 26, 2025

IGI Report Number

LG700565110

Description

LABORATORY GROWN DIAMOND

Shape and Cutting Style

ROUND BRILLIANT

Measurements

6.75 - 6.80 X 4.22 MM

GRADING RESULTS

Carat Weight

1.19 CARAT

Color Grade

D

Clarity Grade

VS 1

Cut Grade

IDEAL

Medium (Faceted)

ADDITIONAL GRADING INFORMATION

Polish

EXCELLENT

Symmetry

EXCELLENT

Fluorescence

NONE

Inscription(s)

IGI LG700565110

Comments: As Grown - No indication of post-growth treatment.

This Laboratory Grown Diamond was created by High Pressure High Temperature (HPHT) growth process.

Type II

April 26, 2025
IGI Report No. LG700565110
ROUND BRILLIANT
6.75 - 6.80 X 4.22 MM
1.19 CARAT
D
VS 1
IDEAL
02.26
89%
Medium (Faceted)

Pointed
EXCELLENT
EXCELLENT
NONE
LG700565110

Cut
Polish
Symmetry
Fluorescence
Inscription(s)

Comments: As Grown - No indication of post-growth treatment.
This Laboratory Grown Diamond was created by High Pressure High Temperature (HPHT) growth process.
Type II

© IGI 2020, International Gemological Institute

FD - 10 20

www.igi.org